Math 150

Section 3.2 Truth Tables and Equivalent Statements

Truth Table for $\sim p$

$$\begin{array}{c|c} p & \sim p \\ \hline T & F \\ \hline F & T \end{array}$$

Truth Table for $p \wedge q$

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Truth Table for $p \vee q$

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Example 1 Construct a truth table for the compound statement: $r \vee (p \wedge \sim q)$

<u>Theorem</u> A logical statement having n components will have 2^n rows in its truth table.

Two statements are equivalent if they have the same truth value in every possible situation. (Notation: $p \equiv q$ means p is equivalent to q.)

De Morgan's Laws

$$\sim (p \land q) \equiv \sim p \lor \sim q$$
$$\sim (p \lor q) \equiv \sim p \land \sim q$$

 $\underline{\text{Example 2}} \text{ Show that } p \equiv \sim (\sim p).$

Example 3 Show that $\sim (p \wedge q) \equiv \sim p \lor \sim q$.

 $\underline{\text{Example 4}} \text{ Show that } \sim (p \lor q) \equiv \sim p \land \sim q.$

Example 5 Negate "I am not going or she is going."