Math 150

Section 3.1 Statements and Quantifiers

A statement is defined as a declarative sentence that is either true or false, but not both simultaneously.

Example 1 Which of the following are statements?
$3+1=4$
$3+1=5$
"Dr. Abernathy ate bacon for breakfast this morning."
"What time is it?"
"The weather is beautiful."
$\mathrm{x}+3=5$
"This sentence is false."

Logical Connectives

Connective	Symbol	Type of Statement
and	\wedge	conjunction
or	\vee	disjunction
not	\sim	negation

Example 2 Let p represent the statement " 6 is a prime number." and q represent the statement "Water is a liquid." Write the following statements and determine their truth value.

$$
\begin{aligned}
& p \vee q \\
& p \wedge q \\
& \sim p \\
& \sim q \\
& \sim p \vee q \\
& \sim(p \vee q) \\
& \sim p \vee \sim q \\
& \sim p \wedge \sim q
\end{aligned}
$$

Quantifiers

Quantifier	Symbol	Type of Quantifer
all, each, every	\forall	universal
some, there exists, at least one	\exists	existential

Statement	Negation
All do.	Some do not.
Some do.	All do not.

Example 3 Negate the statement "Some whole numbers are not rational numbers."

Sets of Numbers
Natural or Counting Numbers: $\{1,2,3,4, \cdots\}(\mathbb{N})$
Whole Numbers: $\{0,1,2,3, \cdots\}$
Integers: $\{\cdots,-3,-2,-1,0,1,2,3, \cdots\}(\mathbb{Z})$
Rational Numbers: $\left\{\left.\frac{p}{q} \right\rvert\, p\right.$ and q are integers,$\left.q \neq 0\right\}(\mathbb{Q})$
Real Numbers: $\{x \mid x$ is a number that can be written as a decimal $\}(\mathbb{R})$
Irrational Numbers: $\{x \mid x$ is a real number and not a rational number $\}$

