Math 150

Section 3.1 Statements and Quantifiers

A statement is defined as a declarative sentence that is either true or false, but not both simultaneously.

Example 1 Which of the following are statements?

3+1=4

3 + 1 = 5

"Dr. Abernathy ate bacon for breakfast this morning."

_

"What time is it?"

"The weather is beautiful."

x+3=5

"This sentence is false."

Logical Connectives

Connective	Symbol	Type of Statement
and	\wedge	conjunction
or	\vee	disjunction
not	\sim	negation

Example 2 Let p represent the statement "6 is a prime number." and q represent the statement "Water is a liquid." Write the following statements and determine their truth value.

 $p \lor q$

 $p \wedge q$

 $\sim p$

 $\sim q$ $\sim p \lor q$

 $\sim (p \lor q)$

 $\sim p \vee \sim q$

 $\sim p \wedge \sim q$

Quantifiers

Quantifier	Symbol	Type of Quantifer
all, each, every	A	universal
some, there exists, at least one	Ξ	existential

Negating Quantifiers

Statement	Negation
All do.	Some do not.
Some do.	All do not.

Example 3 Negate the statement "Some whole numbers are not rational numbers."

Sets of Numbers

Natural or Counting Numbers: $\{1, 2, 3, 4, \dots\}$ (N)

Whole Numbers: $\{0, 1, 2, 3, \dots\}$

Integers: $\{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$ (Z)

Rational Numbers: $\{\frac{p}{q}|p \text{ and } q \text{ are integers }, q \neq 0\} \ (\mathbb{Q})$

Real Numbers: $\{x|x \text{ is a number that can be written as a decimal } (\mathbb{R})$

Irrational Numbers: $\{x | x \text{ is a real number and not a rational number } \}$