Differential Equations Seminar: Week 2 Exercises

1. Solve the matrix equation $A\mathbf{x} = \mathbf{0}$, where

$$A = \left[\begin{array}{rrrr} 1 & 0 & -1 \\ 3 & 1 & 1 \\ -1 & 1 & 2 \end{array} \right].$$

2. Find all eigenvalues and eigenvectors of the given matrices.

(a)
$$\begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$$

(b) $\begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$
(c) $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix}$

3. Find the general solution of the given system of equations.

(a)
$$\mathbf{x}' = \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix} \mathbf{x}$$

(b) $\mathbf{x}' = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \mathbf{x}$

4. Prove that $\lambda = 0$ is an eigenvalue of A if and only if A is singular. (Hint: det A = 0 if and only if A is singular.)